申请专栏作者 参展
投稿发布
您的当前位置:主页 > yabo体育平台注册页 > 正文

深度学习“瓶颈”已至,计算机视觉如何突破困

来源: 时间:2019-02-15
请支持本站,点击下面的广告后浏览!

????近期,计算机视觉奠基者之一,霍金的弟子,约翰霍普金斯大学教授Alan Yuille提出“深度学习在计算机视觉领域的瓶颈已至。”

可思yabo88滚球-yabo88滚球挖掘,智慧医疗,机器视觉,机器人sykv.com

  从人工智能的发展过程看,深度学习是继专家系统之后人工智能应用的又一重要研究领域,也是人工智能和神经计算的核心研究课题之一。Alan Yuille认为,现在做AI不提神经网络,成果都很难发表了,这不是一个好势头。如果人们只追求神经网络的潮流,抛弃所有老方法,也不去想如何应对深度网络的局限性,那么这个领域可能很难有更好的发展。

可思yabo88滚球sykv.com,sykv.cn

  深度学习确实是一个让人向往的技术,这无可辩驳。其实,神经网络这个概念自上个世纪60年代就已经出现了,只是因为最近在大yabo88滚球、计算机性能上面出现的飞跃,使得它真正变得有用起来,由此也衍生出来一门叫做“深度学习”的专业,当前国内涉及计算机视觉领域中,越来越多的人工智能公司或者研究机构投身到“深度学习”的浪潮中了,国内诞生了如旷视科技、商汤科技、极链科技Video++、依图科技等优秀的初创AI企业。旨在将复杂的神经网络架构应用在yabo88滚球建模上,最终带来前所未有的准确性。

可思yabo88滚球-人工智能资讯平台sykv.com

可思yabo88滚球sykv.com,sykv.cn

  现在的技术开发成果也确实让人印象深刻。计算机现在可以辨识图片和视频里的东西都是什么,可以将语音转化成为文字,其效率已经超过了人力范畴。Google也将GoogleTranslate服务中添加了神经网络,现在的机器学习在翻译水平上已经逐步逼近人工翻译。现实中的一些应用也让人大开眼界,就比如说计算机可以预测农田作物产量,其准确性比美国农业部还高。机器还能更加精准的诊断癌症,其准确度也比从医多年的老医师还要高。 可思yabo88滚球-AI,sykv.com智能驾驶,人脸识别,区块链,大yabo88滚球

  美国国防部高级研究计划局的一名负责人John Lauchbury形容如今人工智能领域内存在着三股浪潮: 可思yabo88滚球sykv.com

  第一股浪潮:知识库,或是类似于IBM所开发的“深蓝”和Waston专家系统。 可思yabo88滚球sykv.com,sykv.cn

  第二股浪潮:yabo88滚球学习,包括了机器学习和深度学习。 可思yabo88滚球-yabo88滚球挖掘,智慧医疗,机器视觉,机器人sykv.com

  第三股浪潮:情境适应,其中涉及通过利用少量yabo88滚球,在现实生活中构建出一个可靠的,解释型的模型。 可思yabo88滚球-人工智能资讯平台sykv.com

  从这三股浪潮中,可以发现目前深度学习算法的研究工作进展不错。 可思yabo88滚球sykv.com,sykv.cn

  但深度学习的成果是建立在极其苛刻的前提条件之上。

可思yabo88滚球sykv.com,sykv.cn

  不管是“监督学习”,亦或者是“强化学习”,它们都需要大量的yabo88滚球进行支撑,而且在提前计划上面表现的非常差,只能做某些最简单直接的模式辨认工作。 可思yabo88滚球-AI,sykv.com智能驾驶,人脸识别,区块链,大yabo88滚球

  相比之下,人就能够从极少数的例子上学到有价值的信息,并且善于在时间跨度很长的计划,在针对某个情境上有能力自己建造一个抽象模型,并利用这样的模型来做站在最高处的归纳总结。 本文来自可思yabo88滚球(sykv.com),转载请联系本站及注明出处

  以自动驾驶汽车为例,如果你是采用的“监督学习路径”,那么你需要从汽车驾驶的情境中提取海量的yabo88滚球,而且还要以明确标示出来的“动作标签”进行分类挑拣,比如“停止”“行驶”等。再接下来,你还需要训练一个神经网络,使得它能够从眼下的情景和所与之相对应的行动之间构建因果联系。

可思yabo88滚球-AI,sykv.com人工智能,深度学习,机器学习,神经网络

  如果你是采用的“强化学习路径”,那么你应该给算法一个目标,让它能够独立地判断当下最优解是什么,电脑在不同的情境之下,为了实现避免撞车的这个动作,它估计要宕机上几千次。虽然现在已经有了比较大的进展,一些神经网络可以从yabo88滚球层面,在相当大的样本数量上给出一个惊人的成果,但是它们如果单独拿出一个出来,还是不可靠的,所犯的错误也是人一辈子都不可能犯的。

可思yabo88滚球sykv.com

  yabo88滚球质量的不稳定性带来的是不可靠、不准确,以及不公平。同样,输出的结果,还得取决于输入的yabo88滚球质量如何。神经网络中如果输入的yabo88滚球是不准确的,不完整的,那么结果也会错的离谱,有些时候会造成巨大的损失。不要小看这样的风险,错误的输出可能会造成极大的危害,以GAN为例,有一些不轨之徒可以以一种人类肉眼无法识别的方式篡改图片,让机器错误的辨识图片。篡改的图片和最初的图片在我们看来可能是一致的,但是无人驾驶汽车中,汽车就会受到威胁。 可思yabo88滚球-AI,sykv.com智能驾驶,人脸识别,区块链,大yabo88滚球

  深度学习依然存在瓶颈,但目前它要发挥的作用所需要的前置条件太过苛刻,输入yabo88滚球对其最终的结果有着决定性的影响。如果要真正达到理想中的人工智能,这些瓶颈还有待于人们的进一步突破。

可思yabo88滚球-www.sykv.cn,sykv.com

转发量:

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片 匿名?

关于我们?? 免责声明?? 广告合作?? 版权声明?? 联系方式?? 原创投稿?? 网站地图??

Copyright?2005-2019 Sykv.com 可思yabo88滚球 版权所有 ?? ICP备案:京ICP备14056871号

人工智能资讯?? 人工智能资讯?? 人工智能资讯?? 人工智能资讯

?扫码入群
咨询反馈
扫码关注

微信公众号

返回顶部
关闭